570 research outputs found

    Conference Program

    Get PDF

    Alternative treatment methods for the removal and destruction of algal toxins

    Get PDF
    On August 2, 2014, the greater Toledo area woke up to a Do Not Drink or Boil Water Advisory. The advisory was due to the presence of a cyanotoxin (algal toxin) produced by cyanobacteria in Lake Erie called microcystin-LR in the drinking water supply that has a WHO provisional guideline of 1 mg/L. Upon entering the City of Toledo Collins WTP crib at the Lake Erie intake, potassium permanganate is added to the water for mussel control. While potassium permanganate is needed to control mussels, it lyses cyanobacteria cells, releasing algal toxins to the water. The water is then pumped nearly three miles to the Low Service Station, where powdered activated carbon (PAC) is added to the water for taste and odor control, and the water is transported approximately six miles to the WTP (High Service Station). PAC is generally effective for removal of algal toxins through adsorption onto its surface. At High Service, alum, lime and soda ash are added to the water for coagulation-flocculation, softening, and removal of metals. The water is then sand filtered, carbonated and chlorinated before being sent to the distribution system. However, traditional physicochemical water treatment processes, such as coagulation-sedimentation-filtration, have been shown to only be partially effective for the removal of whole algal cells and not effective for the removal of algal toxins. Furthermore, chlorination is effective for oxidizing algal toxins at relatively high free chlorine concentration as long as the pH is below 8; however, for corrosion control, Toledo water is kept at a pH above 9. Therefore, the treatment process was not enough of a barrier to prevent microcystin-LR from entering the drinking water supply. By August 4, the water treatment plant increased its PAC dosage by nearly four times, and while the toxin was removed, a significant amount of PAC sludge was produced and the cost of PAC addition was unsustainable. The objective of this project is to study alternative water treatment processes, namely membrane separations, biofiltration and ozonation, for the effective removal of algal toxins

    Advanced Research and Development of Face Masks and Respirators Pre and Post the Coronavirus Disease 2019 (COVID-19) Pandemic: A Critical Review

    Get PDF
    The outbreak of the COVID-19 pandemic, in 2020, has accelerated the need for personal protective equipment (PPE) masks as one of the methods to reduce and/or eliminate transmission of the coronavirus across communities. Despite the availability of different coronavirus vaccines, it is still recommended by the Center of Disease Control and Prevention (CDC), World Health Organization (WHO), and local authorities to apply public safety measures including maintaining social distancing and wearing face masks. This includes individuals who have been fully vaccinated. Remarkable increase in scientific studies, along with manufacturing-related research and development investigations, have been performed in an attempt to provide better PPE solutions during the pandemic. Recent literature has estimated the filtration efficiency (FE) of face masks and respirators shedding the light on specific targeted parameters that investigators can measure, detect, evaluate, and provide reliable data with consistent results. This review showed the variability in testing protocols and FE evaluation methods of different face mask materials and/or brands. In addition to the safety requirements needed to perform aerosol viral filtration tests, one of the main challenges researchers currently face is the inability to simulate or mimic true aerosol filtration scenarios via laboratory experiments, field tests, and in vitro/in vivo investigations. Moreover, the FE through the mask can be influenced by different filtration mechanisms, environmental parameters, filtration material properties, number of layers used, packing density, fiber charge density, fiber diameter, aerosol type and particle size, aerosol face velocity and concentration loadings, and infectious concentrations generated due to different human activities. These parameters are not fully understood and constrain the design, production, efficacy, and efficiency of face masks

    Polymers and Solvents Used in Membrane Fabrication: A Review Focusing on Sustainable Membrane Development

    Get PDF
    (1) Different methods have been applied to fabricate polymeric membranes with non-solvent induced phase separation (NIPS) being one of the mostly widely used. In NIPS, a solvent or solvent blend is required to dissolve a polymer or polymer blend. N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and other petroleum-derived solvents are commonly used to dissolve some petroleum-based polymers. However, these components may have negative impacts on the environment and human health. Therefore, using greener and less toxic components is of great interest for increasing membrane fabrication sustainability. The chemical structure of membranes is not affected by the use of different solvents, polymers, or by the differences in fabrication scale. On the other hand, membrane pore structures and surface roughness can change due to differences in diffusion rates associated with different solvents/co-solvents diffusing into the non-solvent and with differences in evaporation time. (2) Therefore, in this review, solvents and polymers involved in the manufacturing process of membranes are proposed to be replaced by greener/less toxic alternatives. The methods and feasibility of scaling up green polymeric membrane manufacturing are also examined

    Functionalization of silver nanoparticles on membranes and its influence on biofouling

    Get PDF
    The aim of this project is modifying the attachment of silver nanoparticles (Ag-NPs) on water treatment membranes, such as cellulose acetate (CA), and to observe its effect towards biofouling. Biofouling results from the accumulation of live/dead microorganisms present in water on the membrane surface and pores, and it creates several performance problems such as clogging of pores, higher operating cost, higher pressure drop, etc. Minimizing this would be ideal to lower operating cost and save expensive materials. In this project, Pseudomonas Fluorescens Migula are used because this species generates extracellular polymeric substances (EPS). EPS produced from bacteria helps create a viable structural foundation for biofilm accumulation with densely packed matrices, which in turn fouls the polymeric membranes. In this study, Ag-NPs are added to CA membranes for biofouling minimization. A concern with combining Ag-NP with membranes is the leaching of nanoparticles. If the Ag-NPs are chemically attached to the membranes, it is believed that leaching can be prevented. Different methods of introducing the Ag-NPs to the membranes studied here will include physical blending, chemically-activated blending, and chemically-crosslinked blending

    Plasmid DNA/RNA separation by ultrafiltration: modeling and application study

    Get PDF
    RNA is one of the main soluble contaminants that needs to be separated from plasmid DNA (pDNA) during its recovery process from fermentation broths. Although significantly different in molecular size, pDNA and RNA are difficult to separate by membrane filtration due to the fact that both types of molecules are highly deformable and therefore suffer flow-induced elongation when permeating through porous membranes. The possibility of performing this separation by ultrafiltration is investigated here with the aid of a theoretical model describing the interactions between two electrically charged, flexible macromolecules that simultaneously permeate through a porous membrane. The results of the simulations, applied to pDNA and the different types of RNA present in cell lysates under typical process conditions, show that only by a careful choice of the membrane pore size and the imposed permeate flux one can achieve the required selectivity in this operation. Ultrafiltration tests using microfiltered lysates from the production of two different plasmids, pVAX1-LacZ (6050 bp) and pCAMBIA-1303 (12,361 bp), were carried out to check the validity of the theoretical predictions; the experimental results confirm these predictions and the idea that this technique can be used in practice for pDNA purification.Fundação para a Ciência e a Tecnologia (FCT

    Dual-Functional Phosphorene Nanocomposite Membranes for the Treatment of Perfluorinated Water: An Investigation of Perfluorooctanoic Acid Removal via Filtration Combined with Ultraviolet Irradiation or Oxygenation

    Get PDF
    Nanomaterials with tunable properties show promise because of their size-dependent electronic structure and controllable physical properties. The purpose of this research was to develop and validate environmentally safe nanomaterial-based approach for treatment of drinking water including removal and degradation of per- and polyfluorinated chemicals (PFAS). PFAS are surfactant chemicals with broad uses that are now recognized as contaminants with a significant risk to human health. They are commonly used in household and industrial products. They are extremely persistent in the environment because they possess both hydrophobic fluorine-saturated carbon chains and hydrophilic functional groups, along with being oleophobic. Traditional drinking water treatment technologies are usually ineffective for the removal of PFAS from contaminated waters, because they are normally present in exiguous concentrations and have unique properties that make them persistent. Therefore, there is a critical need for safe and efficient remediation methods for PFAS, particularly in drinking water. The proposed novel approach has also a potential application for decreasing PFAS background levels in analytical systems. In this study, nanocomposite membranes composed of sulfonated poly ether ether ketone (SPEEK) and two-dimensional phosphorene were fabricated, and they obtained on average 99% rejection of perfluorooctanoic acid (PFOA) alongside with a 99% removal from the PFOA that accumulated on surface of the membrane. The removal of PFOA accumulated on the membrane surface achieved 99% after the membranes were treated with ultraviolet (UV) photolysis and liquid aerobic oxidation

    Nanohybrid Membrane Synthesis with Phosphorene Nanoparticles: A Study of the Addition, Stability and Toxicity

    Get PDF
    Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability of phosphorene nanoparticles in different environments was also examined. Furthermore, given that phosphorene is a new material, toxicity studies with a model nematode, Caenorhabditis elegans, were carried out to provide insight into the biocompatibility and safety of phosphorene. Results showed that membranes modified with phosphorene displayed a higher protein rejection, but lower flux values. Phosphorene also led to a 70% reduction in dye fouling after filtration. Additionally, data showed that phosphorene loss was negligible within the membrane matrix irrespective of the pH environment. Phosphorene caused toxicity to nematodes in a free form, while no toxicity was observed for membrane permeates

    Increasing Salt Rejection of Polybenzimidazole Nanofiltration Membranes via the Addition of Immobilized and Aligned Aquaporins

    Get PDF
    Aquaporins are water channel proteins in cell membrane, highly specific for water molecules while restricting the passage of contaminants and small molecules, such as urea and boric acid. Cysteine functional groups were installed on aquaporin Z for covalent attachment to the polymer membrane matrix so that the proteins could be immobilized to the membranes and aligned in the direction of the flow. Depth profiling using x-ray photoelectron spectrometer (XPS) analysis showed the presence of functional groups corresponding to aquaporin Z modified with cysteine (Aqp-SH). Aqp-SH modified membranes showed a higher salt rejection as compared to unmodified membranes. For 2 M NaCl and CaCl2 solutions, the rejection obtained from Aqp-SH membranes was 49.3 ± 7.5% and 59.1 ± 5.1%. On the other hand, the rejections obtained for 2 M NaCl and CaCl2 solutions from unmodified membranes were 0.8 ± 0.4% and 1.3 ± 0.2% respectively. Furthermore, Aqp-SH membranes did not show a significant decrease in salt rejection with increasing feed concentrations, as was observed with other membranes. Through simulation studies, it was determined that there was approximately 24% capping of membrane pores by dispersed aquaporins
    • …
    corecore